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(1985) and Kirkpatrick, Gelatt and Veechi (1983): the
traveling salesman problem.

In performing our final experiments for that paper
shall take into account several lessons learned from ilie
experiments reported here. First, due to difficulties we
encountered, it has become clear iliat both our starting
and terminating procedures need revision.

Our current termination tests ask whether FREEZE_
LIM consecutive temperatures have occurred in which:
a) the acceptance ratio was below MINPERCENT, and
b) no improvement in the best solution seen has taken
place. For several types of instances encountered, we
had to make major changes in ilie termination parameters
simply because an abundance of O-cost moves kept ilie
acceptance frequency high, even though no further im
provement in cost was occurring. Thus, the termination
condition should probably be altered so iliat only ilie rate
at which uphill moves are accepted is relevant (a very
simple modification).

We also found ourselves regularly having to choose
starting temperatures in an ad hoc manner because the
generic methods we had devised for this (using either
trial runs or multiple calls to NEXT _CHANGE) were
not sufficiently robust. We suspect that, for most prob
lems, starting temperatures can be determined using
simple problem-specific formulas (analytically or empiri
cally derived) that depend only on the desired initial
acceptance ratio and a few easily computable parameters
of the instance. For instance, I V I and IE I might well
suffice in the case of graph coloring. Thus, there is
likely to be a problem-specific INITIAL_TEMP routine
in our future implementations.

A final observation is that the running-time/quality
of-solution tradeoff inherent in most annealing imple
mentations may well extend far beyond the standard
limits of acceptable running time. In our graph coloring
experiments, we saw positive results come out of runs
that took a week or more of continuous computing. That
this may be of more than academic interest follows from
the rapid rate at which the price of computer cycles is
declining. That compute-week could be almost free if it
were spent on one of the idle personal computers iliat
now decorate many offices, or it could be an overnight
background run on one of the much faster machines
becoming more widely available. For problems in which
the economic value of finding improved solutions is
substantial, this is a thought to keep in mind.

AARTS, E. H. L., AND J. H. M. KORST. 1989. Simulated
Annealing and Boltzmann Machines. John Wiley &
Sons, Chichester, U.K.
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amounts of running time, our luck seems to have run out
by the time n = 500.

We did not perform experiments for values of n > 500,
but the trends are already obvious and conform to our
expectations: Annealing (and local optimization, to a
slightly lesser extent) will be even more substantially
outclassed by Karmarkar Karp as n continues to in
crease. Note that typically values for log 10

(Karmarkar-Karp) are less than: -13 for n = 1,000
(in 6.5 seconds), - 16 for n = 2,000 (in 13.6 seconds),
and -24 for n = 10,000 (in 75.8 seconds). Thus,
number partitioning, at least for the types of ran
dom instances we have been considering, illustrates the
limitations of simulated annealing as a general technique.
When the solution space is sufficiently mountain
ous, annealing's advantage over straightforward multiple
start local optimization can be lost entirely. Moreover,
other approaches, not tied to the concept of navigating
around a solution space, may be able to outperform it
substantially.

There remains the question of wheilier some oilier
neighborhood structure for the problem, perhaps using
different notions of solution and cost, might prove more
amenable to annealing. We do not rule out this possi
bility, although at present we see not reasonable al
ternatives. The natural idea of modifying the annealing
implementation by replacing difference as the objec
tive function by loge difference) appears to be of little
help, based on limited experiments. We leave ilie invest
igation of additional possibilities to future researchers.

In this paper, we consider implementations of simulated
annealing for two problems that had previously not been
thought accessible to local optimization and its variants:
graph coloring and number partitioning. Our graph col
oring results, as summarized in Section 2.5, were gener
ally positive for simulated annealing, assuming one can
tolerate the large computation times involved. The re
sults for number partitioning were, as expected, decid
edly negative, with annealing substantially outperformed
by the much faster Karmarkar-Karp algorithm, and even
beaten (on a time-equalized basis) by multiple start local
optimization.

This all fits in with the view expressed in Part I of this
paper (Johnson et aI. 1989), iliat annealing is a poten
tially valuable tool but in no ways a panacea. Part III
(Johnson et aI. 1990) will conclude this series with an
exploration of how well simulated annealing does against
the more traditional competition on perhaps the most
famous combinatorial optimization problem of them all,
and the one for which it was originally touted by Cerny
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